

Introduzione

Questo documento fornisce tutte le informazioni necessarie per l'installazione, la connessione, l'uso e la risoluzione di eventuali problemi relativi all'RS Datalogger.

Descrizione generale

L'RS Datalogger fornisce una soluzione semplice ed economica per conseguire i seguenti obiettivi:

- Un data logger per il semplice monitoraggio degli inverter di un impianto.
- Un data logger per il monitoraggio degli inverter di un impianto con funzione di power limiter (per questa applicazione è richiesto un multimetro digitale).

Il seguente schema mostra un esempio di un sistema per il monitoraggio degli inverter tramite entrambe le porte di comunicazione RS485-1 e RS485-2 dell'RS Datalogger. Ad ogni porta è possibile collegare massimo 20 inverter. Al sistema è possibile collegare anche un sensore esterno per la misura dell'irraggiamento e della temperatura esterna dei pannelli. La porta RS485-2 deve essere configurata in modalità "Inverter". Fare riferimento al capitolo "Configurazione RS485-2" per la configurazione.

Il seguente schema mostra un esempio di un sistema con power limiter, nel quale la porta RS485-1 viene utilizzata per il controllo ed il monitoraggio degli inverter, mentre la porta RS485-2 viene utilizzata per il monitoraggio del multimetro digitale. Al sistema è possibile collegare anche un sensore esterno per la misura dell'irraggiamento e della temperatura esterna dei pannelli. Il multimetro digitale è installato sul lato rete, secondo l'impostazione di default dell'RS Datalogger "Meter on grid". La porta RS485-2 deve essere configurata in modalità "Meter". Fare riferimento al capitolo "Configurazione RS485-2" per la configurazione

Se necessario, il multimetro digitale può essere installato sul lato carico, in alternativa al lato

rete. in questo caso, l'RS Datalogger deve essere configurato in "Meter on load". L'RS Datalogger supporta i seguenti multimetri digitali:

N.	Costruttore	Modello	Protocollo	Connessione
1	Lovato	DMG210, multimetro trifase		
2	Gavazzi	Et340, multimetro trifase	MODBUS-RTU	RS485
3 Gavazzi Et112, multimetro monofase				
4	CHINT	DTSU666, multimetro trifase		

L'RS Datalogger supporta solamente il sensore esterno Si-V-10TC-T per la misura dell'irraggiamento e della temperatura esterna dei pannelli. L'immagine seguente mostra lo schema di connessione del sensore esterno:

- 1. Indicatore di stato LED
- 3. Connettore segnali sensore esterno
- 5. Connettore segnali controllo remoto
- 7. Connettore segnali di uscita
- 9. Connettore RS485-2
- Descrizione porte di comunicazione

Connettore	Porta	Descrizione
SECHALLSENSORE	G	GND
ESTERNO	A1	Ingresso sensore irraggiamento (range 0-10V)
	G	GND
	A2	Ingresso sensore temperatura pannelli (range 0-10V)
	G	GND
	A3	Ingresso sensore temperatura (range 0-10V)
	USB	Utilizzabile per l'aggiornamento del firmware ed esportazione dei dati

4. Connettore USB

8. Connettore RJ45

10. Connettore RS485-1

6. Connettore segnali di ingresso

SEGNALLCONTROLLO	0	Se questo pin viene collegato al pin Gen, gli inverter vengono spenti
REMOTO	5	Se questo pin viene collegato al pin Gen, la potenza di uscita degli inverter viene limitata a 0%
0 5 6 7 Gen	6	Se questo pin viene collegato al pin Gen, la potenza di uscita degli inverter viene limitata al 50%
	7	Se questo pin viene collegato al pin Gen, la potenza di uscita degli inverter viene limitata al 75%
	Gen	GND
INPUT SIGNAL	Segnali di ingresso	Riservato
OUTPUT SIGNAL $O_2 \ \ \ \ \ \ O_1$ $\left[\begin{array}{c} \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Segnali di uscita	Riservato
	LAN	Utilizzata per il collegamento del router
	LED verde	Il LED acceso fisso segnala il collegamento della porta
	LED giallo	II LED lampeggiante segnala il trasferimento dei dati.
RS485-2 T/R+ T/R-	T/R+	Segnale + della porta RS485-2
	T/R-	Segnale - della porta RS485-2
RS485-1 T/R+ T/R-	T/R+	Segnale + della porta RS485-1
	T/R-	Segnale - della porta RS485-1

Le porte RS485-1 e RS485-2 utilizzano il protocollo Modbus-RTU con 8 bit dati, 1 bit stop, no parità e baud rate a 9600. Assicurarsi che i dispositivi connessi all'RS Datalogger supportino la stessa configurazione.

L'RS Datalogger viene alimentato con un alimentatore esterno da 5V, 1A. Utilizzare solo ed esclusivamente l'alimentatore fornito in dotazione.

Installazione

Contenuto della confezione

- La scatola contiene i seguenti oggetti:
 - Unità di controllo e monitoraggio RS Datalogger
 - sacchetto accessori (viti di fissaggio e connettori)
 - Alimentatore AC da 5V, 1A
 - Manuali

Se è necessaria la limitazione della potenza, l'utente o installatore deve fornire un multimetro digitale supportato dall'RS Datalogger (non incluso nella confezione).

Connessioni

Per il solo sistema di monitoraggio, connettere il datalogger secondo le istruzioni seguenti:

1. Connettere il datalogger agli inverter tramite la porta RS485-1 (la porta permette la connessione di massimo 20 inverter).

- 2. Connettere il datalogger agli inverter tramite la porta RS485-2 (la porta permette la connessione di massimo 20 inverter), se richiesto. La porta RS485-2 deve essere configurata in "Inverter" mode.
- 3. Configurare l'indirizzo Modbus di ciascun inverter tramite le APP RS Connect. Di default, gli indirizzi supportati dalla porta RS485-1 sono da 1 a 20, mentre gli indirizzi per la porta RS485-2 sono da 21 a 40.
- 4. Collegare il cavo LAN.
- 5. Alimentare l'RS Datalogger

Per la limitazione di potenza, connettere il datalogger secondo le istruzioni seguenti:

- 1. Installare il multimetro digitale. Fare riferimento al manuale del multimetro per maggiori informazioni sul collegamento. Assicurarsi che il protocollo di comunicazione del multimetro sia impostato su Modbus-RTU e che il formato dei dati sia il seguente: 8 bit dati, 1 bit stop, no parità, baud rate a 9600bps.
- 2. Collegare il datalogger al multimetro tramite la porta RS485-2. Fare riferimento al manuale del multimetro per maggiori informazioni sul collegamento della porta Rs485.
- 3. Collegare il datalogger agli inverter tramite la porta RS485-1
- 4. Configurare l'indirizzo Modbus di ciascun inverter tramite le APP RS Connect. Di default, gli indirizzi supportati dalla porta RS485-1 sono da 1 a 20.
- 5. Collegare il cavo LAN.
- 6. Alimentare l'RS Datalogger.

Configurazione di default

Nei seguenti casi, non è necessaria alcuna modifica alle impostazioni del datalogger:

- Il sistema è destinato al monitoraggio di massimo 20 inverter.
- Il sistema viene utilizzato anche per il monitoraggio dell'irraggiamento e della temperatura dei pannelli.
- Vengono utilizzati i parametri Modbus di default del datalogger per la comunicazione con gli inverter tramite la porta RS485-1:
- Indirizzo: 1-20.
- Baudrate: 9600bps.
- Il datalogger è connesso ad una rete LAN che supporta il protocollo DHCP per l'assegnazione automatica dell'indirizzo IP.

La figura seguente mostra il collegamento di default dell'RS Datalogger, gli indirizzi Modbus degli inverter devono essere configurati da 1 a 20:

Modifica delle impostazioni di default

In caso di gualsiasi altra configurazione diversa da quella descritta nel capitolo precedente, I'RS Datalogger deve essere configurato con apposite impostazioni. Per poter modificare le impostazioni del datalogger, è necessario collegare il datalogger ed un computer alla medesima rete LAN.

Collegamento dell'RS Datalogger tramite browser web

Collegare innanzitutto l'RS Datalogger alla rete LAN; quindi aprire la pagina del browser e digitare l'indirizzo IP del datalogger. Per conoscere l'indirizzo IP assegnato al datalogger, verificare i dati LAN del router di rete.

La seguente immagine mostra la pagina dei settaggi del datalogger:

RS Datalogger				
	Settings	Logs	List	

		Logger Info.	RS Datalogger	Date & Time	2020-7-27 17:22:14
Now	13.36 kW	IP Address	192.168.1.187	Language	English
Total	0 kWh 5877 kWh	Server Address	54.38.38.66	Administration	admin
kwh/kwp	0	Irradiance	29w/m²	RS485-1 Search Starting Address	1
		Solar cell Temperature	27.3°C	RS485-2 Search Starting Address	21
SENSO	DRS	Irradiance Meter Address	31	Temperature Meter Address	32
tore d'annes	20	RS485-2 Configuration	Device	Power Limit	Disable
Thermometer	29W/III 27.3°C	Grid Configuration	Edit	Reactive Power control	Edit
		Active Power Control	Edit	Digital Meter	Measurement Value

Il nome e la password per accedere ai settaggi sono entrambi "admin":

Logger info

La pagina "logger info" mostra le informazioni di base del datalogger, tra le quali nome del modello, S/N, versione FW, versione database. È inoltre possibile modificare il nome del datalogger secondo le proprie esigenze, il quale sarà visibile nel portale web.

Date & Time

Nella pagina "Date & Time", è possibile impostare il fuso orario, abilitare/disabilitare la funzione NTP e cambiare il server NTP:

IP Address

Nella pagina "IP Address" è possibile cambiare la modalità di assegnazione dell'indirizzo IP in modalità DHCP o IP fisso. Nel selezionare la modalità IP fisso, assicurarsi che l'indirizzo IP

Language

Nella pagina "Language" è possibile cambiare la lingua del sistema tra Inglese e Cinese.

Language : English マ English 中文 Save

Server Address

Nella pagina "Server Address" è possibile abilitare/disabilitare la trasmissione dei dati al

```
Cloud Server Website : <u>www.riello-rsmonitoring.com</u>
Upload to cloud Server : <sup>@</sup>Yes ONo
```

Administration

server.

Nella pagina "Administration" è possibile cambiare il nome e la password necessari per modificare i settaggi.

Irradiance

Nella pagina "Irradiance" viene visualizzato l'irraggiamento misurato dal sensore esterno ed in questa pagina è possibile inserire un valore per la calibrazione dell'irraggiamento, in W/m².

Save

Solar Cell Temperature

Nella pagina "Solar Cell Temperature" viene visualizzata la temperatura misurata dal sensore esterno ed in questa pagina è possibile inserire un valore per la calibrazione della temperatura, in °C.

RS485-1 Search Starting Address

Alla porta RS485-1 possono essere collegati massimo 20 inverter, i cui indirizzi di default sono da 1 a 20. L'indirizzo iniziale di ricerca può essere impostato da 1 a 216.

Save

RS485-2 Search Starting Address

Alla porta RS485-2 possono essere collegati massimo 20 inverter, i cui indirizzi di default sono da 21 a 40. L'indirizzo iniziale di ricerca può essere impostato da 1 a 228.

Irradiance Meter address and Temperature Meter Address

L'RS Datalogger supporta anche il collegamento con i sensori JD auspice JDA-W con Pyranometro LP PYRA 03 e JDA-T con sensore di temperatura PT-100. Questi sensori devono essere collegati alla porta RS485-1, con i seguenti indirizzi Modbus. Tali indirizzi hanno il valore fisso di 31 e 32, pertanto non sono modificabili.

Irradiance Meter Address	31	Temperature Meter Address	32
-----------------------------	----	------------------------------	----

RS485-2 Configuration

La RS485-2 è una porta multi-funzione e può essere configurata nelle seguenti modalità:

- Device
- Inverter
- Digital Meter

In modalità "Device", il datalogger funziona come un dispositivo, quindi un host connesso alla porta RS485-2, può ottenere informazioni dal datalogger. Questa modalità viene utilizzata solamente per operazioni di manutenzione.

In modalità "Inverter", il datalogger funziona come un host, quindi esso comunica con gli inverter connessi alla porta RS485.

In modalità "Digital Meter", il datalogger funziona come un host, quindi esso comunica con il multimetro digitale connesso alla porta RS485-2 (vedere il capitolo seguente per la configurazione del multimetro digitale.

Power limit

Per abilitare la limitazione di potenza, configurare il datalogger come indicato di seguito:

- Abilitare la funzione power limit.
- Impostare l'indirizzo del multimetro digitale secondo la configurazione del multimetro stesso (fare riferimento al manuale del multimetro per maggiori informazioni)
- Impostare il tipo di multimetro digitale.
- Impostare la direzione di lettura del multimetro, la potenza dalla rete al carico è considerata come positiva.
- Impostare la posizione del multimetro a seconda dell'installazione su lato carico, o su lato rete.
- Impostare la massima potenza erogabile in rete.
- La seguente immagine mostra le impostazioni di default dell'RS Datalogger.

Parameter
Disable
1
Unknown V
Positive V
Meter on Gird V
0

Save

Grid Configuration

L'RS Datalogger fornisce un modo semplice per configurare gli inverter connessi alle porte RS485, tramite l'interfaccia web. Nella pagina "Grid Configuration", è possibile configurare i parametri di rete degli inverter connessi, come sovratensione, sottotensione, ecc. Per procedere con la configurazione, selezionare prima lo specifico inverter tramite il menu a tendina, quindi impostare i valori desiderati.

			•
Function	Parameter	Function	Parameter
First start delay time(s)	60	Reconnect delay time(s)	60
Grid Frequency High Level 1 Limit(0.01Hz)	5150	Grid Frequency Low Level 1 Limit(0.01Hz)	4750
Grid Voltage High Level 1 Limit(0.1V)	4750	Grid Voltage Low Level 1 Limit(0.1V)	3040
Grid Frequency High Level 1 Trip Time(ms)	100	Grid Frequency Low Level 1 Trip Time(ms)	100
Grid Voltage High Level 1 Trip Time(ms)	100	Grid Voltage Low Level 1 Trip Time(ms)	3000
Grid Frequency High Level 2 Limit(0.01Hz)	9990	Grid Frequency Low Level 2 Limit(0.01Hz)	0
Grid Voltage High Level 2 Limit(0.1V)	9990	Grid Voltage Low Level 2 Limit(0.1V)	1710
Grid Frequency High Level 2 Trip Time(ms)	99999	Grid Frequency Low Level 2 Trip Time(ms)	9999
Grid Voltage High Level 2 Trip Time(ms)	99999	Grid Voltage Low Level 2 Trip Time(ms)	300
Grid Frequency High Level 1 back(0.01Hz)	5005	Grid Frequency Low Level 1 back(0.01Hz)	4755
Derating Grid Frequency High back(0.01Hz)	5020	Derating Grid Frequency Low back(0.01Hz)	0
Grid Voltage High Moving Average Limit(0.1V)	4180	Soft output power percent(%)	8

Save

Reactive Power Control

In alcuni casi, l'inverter deve fornire potenza reattiva, al fine di ottenere la compensazione della potenza reattiva. La potenza reattiva può essere gestita con i seguenti controlli: PF fisso, percentuale potenza reattiva fissa, curva di $Cos\phi(P)$ e curva Q(U).

		1-AL23SF	vS10000000 🗸
Function	Parameter	Function	Parameter
Q mode	0	P.F (Cosφ)(0.001)	990
Reactive power percent(%)	0	Q(U) control response time(s)	10
Cos	0	Cosp(P) curve node1 value(0.001)	1000
Cos	20	Cosp(P) curve node2 value(0.001)	1000
Cosp(P) curve node3 percent(%)	50	Cosp(P) curve node3 value(0.001)	1000
Cos	100	Cosp(P) curve node4 value(0.001)	-910
Q(U) curve node1 percent(%)	93	Q(U) curve node1 value(0.1%)	330
Q(U) curve node2 percent(%)	97	Q(U) curve node2 value(0.1%)	0
Q(U) curve node3 percent(%)	103	Q(U) curve node3 value(0.1%)	0
Q(U) curve node4 percent(%)	107	Q(U) curve node4 value(0.1%)	-330

Save

Il parametro "Q mode" definisce quale dei seguenti controlli della potenza reattiva viene applicato:

- 0: potenza reattiva in uscita nulla
- 1: PF fisso
- 2: percentuale potenza reattiva fissa
- 3: curva Cosq(P)
- 4: curva Q(U)

Se il parametro Q mode è 0, tutti gli altri parametri riguardanti la potenza reattiva non hanno effetto. Se il parametro Q mode è 1, solo il parametro "P.F (cosφ)(0.001)" agisce sul controllo. Se il parametro Q mode è 2, solo il parametro "Reactive power percent(%)" agisce sul controllo. Se il parametro Q mode è 3, il controllo agisce secondo i seguenti parametri:

Cos	0	Cosp(P) curve node1 value(0.001)	1000
Cos	20	Cosp(P) curve node2 value(0.001)	1000
Cos	50	Cosp(P) curve node3 value(0.001)	1000
Cos	100	Cosp(P) curve node4 value(0.001)	-910

Se il parametro Q mode è 4, il controllo agisce secondo i seguenti parametri:

Q(U) curve node1 percent(%)	93	Q(U) curve node1 value(0.001)	330
Q(U) curve node2 percent(%)	97	Q(U) curve node2 value(0.001)	0
Q(U) curve node3 percent(%)	103	Q(U) curve node3 value(0.001)	0
Q(U) curve node4 percent(%)	107	Q(U) curve node4 value(0.001)	-330

Active Power Control

Il controllo della potenza attiva supporta solamente il declassamento per sovra-frequenza. Impostando il parametro "Frequency Derating Function" a 1, questa funzione è abilitata ed il controllo sulla potenza attiva è basato sulla soglia di frequenza iniziale al 100% della potenza di uscita e sulla soglia finale al 0% della potenza di uscita in modo lineare.

Function	Parameter	Function	Parameter
Frequency Derating Function	0	Over frequency derating start(0.01Hz)	5020
Over frequency derating end(0.01Hz)	5270		

1-AL23SPS1000000

Save

Digital Meter

La pagina "Digital Meter" visualizza le misure del multimetro digitale. Se il sistema è configurato per supportare il multimetro digitale, è possibile monitorare le misure in questa pagina in modo da verificare il corretto funzionamento del multimetro.

Function	Value	Function	Value
L1 phase voltage(V)	0.0	L1-L2 phase voltage(V)	0.0
L2 phase voltage(V)	0.0	L2-L3 phase voltage(V)	0.0
L3 phase voltage(V)	0.0	L3-L1 phase voltage(V)	0.0
L1 phase current(A)	0.00	L1 phase watt(W)	0
L2 phase current(A)	0.00	L2 phase watt(W)	0
L3 phase current(A)	0.00	L3 phase watt(W)	0
L1 phase watt(VA)	0	L1 phase watt(VAR)	0
L2 phase watt(VA)	0	L2 phase watt(VAR)	0
L3 phase watt(VA)	0	L3 phase watt(VAR)	0
System watt(w)	0	System VA(VA)	0
System VAR(VAR)	0	L1 phase power factor	0.000
L2 phase power factor	0.000	L3 phase power factor	0.000
System power factor	0.000		

Registrare il sistema sul portale web

Il manuale riguardante il portale web è disponibile nel seguente sito internet:

https://www.riello-rsmonitoring.com/

Risoluzione dei problemi

Gli indicatori utilizzati per la segnalazione di eventuali problemi di installazione sono i seguenti:

- LED presente sull'RS Datalogger.
- L'interfaccia web dell'RS Datalogger.
- Log degli allarmi presente sulla App.
- LED presenti sull'inverter.

La tabella seguente riassume lo stato di questi indicatori a seconda delle condizioni del sistema:

Descrizione	LED su RS Datalogger	Interfaccia Web del datalogger	
Anomalia inverter	LED rosso acceso	Messaggio di fault specifico	
Comunicazione persa con il multimetro	LED giallo acceso	Energy Meter lost	
Comunicazione persa con il server	LED giallo lampeggiante	LAN Unavailable	
Comunicazione persa con l'inverter	LED verde lampeggiante	Inverter lost	
Comunicazione corretta con l'inverter	LED verde acceso	N/A	